105 research outputs found

    Cardiac progenitor cells. The matrix has you

    Get PDF
    Components of the cardiac extracellular matrix (ECM) are synthesized by residing cells and are continuously remodeled by them. Conversely, residing cells (including primitive cells) receive constant biochemical and mechanical signals from the ECM that modulate their biology. The pathological progression of heart failure affects all residing cells, inevitably causing profound changes in ECM composition and architecture that, in turn, impact on cell phenotypes. Any regenerative medicine approach must aim at sustaining microenvironment conditions that favor cardiogenic commitment of therapeutic cells and minimize pro-fibrotic signals, while conversely boosting the capacity of therapeutic cells to counteract adverse remodeling of the ECM. In this Perspective article, we discuss multiple issues about the features of an optimal scaffold for supporting cardiac tissue engineering strategies with cardiac progenitor cells, and, conversely, about the possible antifibrotic mechanisms induced by cell therapy

    Editorial: The cardiac stroma in homeostasis and disease

    Get PDF

    Getting old through the blood. Circulating molecules in aging and senescence of cardiovascular regenerative cells

    Get PDF
    Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells

    Analysis of pregnancy-associated plasma protein a production in human adult cardiac progenitor cells

    Get PDF
    IGF-binding proteins (IGFBPs) and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A) is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs) and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology

    EMT/MET at the crossroad of stemness, regeneration and oncogenesis. The Ying-Yang equilibrium recapitulated in cell spheroids

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target

    Oral plaque from Type 2 diabetic patients reduces the clonogenic capacity of dental pulp-derived mesenchymal stem cells

    Get PDF
    Type 2 diabetes (T2D) is a major metabolic disease and a key epigenetic risk factor for the development of additional clinical complications. Among them, periodontitis (PD), a severe inflammatory disease ascribable to a dysregulated physiology and composition of the oral microbiota, represents one of the most relevant complications. Periodontitis can impact the structure of the tooth and likely the stem and progenitor cell pool, which actively contributes to the periodontal microenvironment and homeostasis. Modifications of the oral plaque play a key role in the etiopathogenesis of PD caused by T2D. However, to what extent the biology of the progenitor pool is affected has still to be elucidated. In this short report, we aimed to explore the biological effects of oral plaque derived from T2D patients with PD in comparison to non-diabetic patients with PD. Oral plaque samples were isolated from T2D and non-diabetic subjects with PD. Dental pulp stem cells (DPSCs), derived from the premolar tooth, were conditioned for 21 days with oral plaque samples and tested for their clonogenic ability. Cultures were also induced to differentiate towards the osteogenic lineage, and ALP and osteocalcin gene expression levels were evaluated by real-time qPCR. Results have shown that the number of clones generated by DPSCs exposed to T2D oral plaque was significantly lower compared to controls (ctl). The multivariate analysis confirmed that the decreased clonogenesis was significantly correlated only with T2D diagnosis. Moreover, the effect of T2D oral plaque was specific to DPSCs. Indicators of osteogenic differentiation were not significantly affected. This study provides a new biological insight into the effects ascribable to T2D in PD

    New perspectives to repair a broken heart

    Get PDF
    The aim of cardiac cell therapy is to restore at least in part the functionality of the diseased or injured myocardium by the use of stem/ progenitor cells. Recent clinical trials have shown the safety of cardiac cell therapy and encouraging efficacy results. A surprisingly wide range of non-myogenic cell types improves ventricular function, suggesting that benefits may result in part from mechanisms that are distinct from true myocardial regeneration. While clinical trials explore cells derived from skeletal muscle and bone marrow, basic researchers are investigating sources of new cardiomyogenic cells, such as resident myocardial progenitors and embryonic stem cells. In this commentary we briefly review the evolution of cell-based cardiac repair, some progress that has been made toward this goal, and future perspectives in the regeneration of cardiac tissue. © 2009 Bentham Science Publishers Ltd

    Î’-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells

    Get PDF
    Β-blockers (BB) are a primary treatment for chronic heart disease (CHD), resulting in prognostic and symptomatic benefits. Cardiac cell therapy represents a promising regenerative treatment and, for autologous cell therapy, the patients clinical history may correlate with the biology of resident progenitors and the quality of the final cell product. This study aimed at uncovering correlations between clinical records of biopsy-donor CHD patients undergoing cardiac surgery and the corresponding yield and phenotype of cardiospheres (CSs) and CS-derived cells (CDCs), which are a clinically relevant population for cell therapy, containing progenitors. We describe a statistically significant association between BB therapy and improved CSs yield and CDCs phenotype. We show that BB-CDCs have a reduced fibrotic-like CD90 + subpopulation, with reduced expression of collagen-I and increased expression of cardiac genes, compared to CDCs from non-BB donors. Moreover BB-CDCs had a distinctive microRNA expression profile, consistent with reduced fibrotic features (miR-21, miR-29a/b/c downregulation), and enhanced regenerative potential (miR-1, miR-133, miR-101 upregulation) compared to non-BB. In vitro adrenergic pharmacological treatments confirmed cytoprotective and anti-fibrotic effects of β1-blocker on CDCs. This study shows anti-fibrotic and pro-commitment effects of BB treatment on endogenous cardiac reparative cells, and suggests adjuvant roles of β-blockers in cell therapy applications

    Normal versus pathological cardiac fibroblast-derived extracellular matrix differentially modulates cardiosphere-derived cell paracrine properties and commitment

    Get PDF
    Human resident cardiac progenitor cells (CPCs) isolated as cardiosphere-derived cells (CDCs) are under clinical evaluation as a therapeutic product for cardiac regenerative medicine. Unfortunately, limited engraftment and differentiation potential of transplanted cells significantly hamper therapeutic success. Moreover, maladaptive remodelling of the extracellular matrix (ECM) during heart failure progression provides impaired biological and mechanical signals to cardiac cells, including CPCs. In this study, we aimed at investigating the differential effect on the phenotype of human CDCs of cardiac fibroblast-derived ECM substrates from healthy or diseased hearts, named, respectively, normal or pathological cardiogel (CG-N/P). After 7 days of culture, results show increased levels of cardiogenic gene expression (NKX2.5, CX43) on both decellularized cardiogels compared to control, while the proportion and staining patterns of GATA4, OCT4, NKX2.5, ACTA1, VIM, and CD90-positive CPCs were not affected, as assessed by immunofluorescence microscopy and flow cytometry analyses. Nonetheless, CDCs cultured on CG-N secreted significantly higher levels of osteopontin, FGF6, FGF7, NT-3, IGFBP4, and TIMP-2 compared to those cultured on CG-P, suggesting overall a reduced trophic and antiremodelling paracrine profile of CDCs when in contact with ECM from pathological cardiac fibroblasts. These results provide novel insights into the bidirectional interplay between cardiac ECM and CPCs, potentially affecting CPC biology and regenerative potential
    • …
    corecore